Nanocomposite Electrodes for SAFC Stack Operating on Reformate

Ramez Elgammal¹, Alexander B. Papandrew¹, Mengkun Tian¹, David L. Wilson¹

and Thomas A. Zawodzinski^{1,2}

¹Chemical and Biomolecular Engineering University of Tennessee, Knoxville, TN USA

²Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN USA

> SOFC Review Meeting June 13, 2017

Solid Acids in Electrochemical Devices

Superprotonic Solid Acid Electrolytes

- Hydrogen-bonded ionic solids
- Polymorphic phase transitions at T>100 °C
- H⁺ conductivity increases > 1000x at phase transition

K.D. Kreuer, Annual Review of Materials Research 33, 333–359 (2003)

Solid acid fuel cells based on CDP operate at 240-260 °C using plating the state state

Crystal Symmetry Controls H+ Conductivity in Solid Acids

Paraelectric (RT)

4 Oxygen sites per unit cell4 H-bonds (----) possible per tetrahedron

Superprotonic (>228 °C)

24 Oxygen sites per cell,each with 1/6 occupancy6 H-bonds (----) possible per tetrahedron

Operational Humidity Requirements

Recent Progress in SAFCs

- ARPA-e REBELS program
- Natural gas in—power out
- CHP systems
- SOTA at start of project: electrodes with ~3 to 5 mg/cm² Pt
- Important target: lowered costs

Major recent progress in improving Pt loading (decreased by 25 to 30x)

REBELS Project Team & Objectives

Oak Ridge National Lab

Natural gas reformer Materials synthesis

SAFCell, Inc. Stack Design and Fabrication

University of Tennessee

Nanocomposite Electrode

Fabrication

Development of a solid acid fuel cell stack incorporating nanocomposite electrodes operating on externally reformed natural gas

The Catalyst Problem in SAFCs

Triple point boundary at perimeter only

High Pt to maintain conduction

Breakthrough Electrodes

Task 1.1 Fabrication of Nanostructured Cathodes M1.1.1 5 g of NC and PVD nanostructured cathodes with 0.75 mg/cm² Pt loading synthesized (Gen 1)

"Mixed conductor" eliminates the problem of conductivity loss at low Pt content

Task 1.1 Fabrication of Nanostructured Cathodes M1.1.1 5 g of NC and PVD nanostructured cathodes with 0.75 mg/cm² Pt loading synthesized (Gen 1)

Gen 1.5: Inverted Structure?

1.2 *Physical Property Characterization* M1.3.1: 25% greater Pt specific surface area retention compared to baseline

SAFC cathode after 16 hours at 250 C

Target SA determined via static H₂ chemisorption

Performance of Gen 3 Materials

 Electrodes with 0.09 mg/cm² now prepared that can match SOTA performance

 At 0.78V, almost doubling of current density with ~16X less Pt from SOTA starting point

Recent Progress on Stability

- Gen 3 cells typically degrade at -3 μ A/cm²/hr, over 10X slower than Gen 0
- Performance losses over time are strongly correlated with increase in ASR, ~10% over 200+ hours

3D Printed Natural Gas Reformer Subsystem (Fuel Flex!) **Reactants In** Syn-Gas Out 3D printed stainless steel design for 220 °C 200 °C integration of 500 °C reformer with 250 °C SAFC stack 550 °C 200 °C 500 °C SAFC Stack 2%Rh/mullite 500 °C 25 °C 240 °C Reforme monolith Preheater WGS Catalyst 230 °C Nested-Annular TENNESSEE 👉 knoxville Passages

Remaining Challenges

Unlike Cathode, Carbon Supports may be a Viable Option for Anode

HOR Polarization in H₂ + CO

Simulated MeOH reformate 75% H₂, 7% CO, 18% CO₂

Simulated Propane Reformate 43% H₂, 37% N₂, 10% CO, 9.75% CO₂, 0.25% CH₄

We can use similar CL construction approaches

Alternatives to Pt for HOR?

In the absence of liquid acid, dissolution concerns are limited

Pd is Identical to Pt for HOR

Ru outperforms Pt on Reformate Streams

Platinum

- Superior catalyst (on pure hydrogen)
- Lower performance on reformate streams
- Ruthenium
- Ru ou performs Pt at lower overpotentials
- Water gas shift reaction or electrooxidation?

J. Mater. Chem. A, 2015, 3, 3984

Ru and Pt anodes are Superior on Reformate Streams

Ruthenium and Pt Electrodes

- Under reformate, similar performance to pure Ru
- Drastic decrease in Pt
- Higher Polarization still lead to higher Pt performance

Cell conditions: 250 °C Anode: $10\%CO 43\% H_2 0.25\% CH_4 75$ °C dew point $1.05 mg/cm^2 Ru$ Cathode: $H_2 75$ °C dew point $1.05 mg/cm^2 Pt$ THEUNIN

Hydrogen Oxidation Limited by Ru Metal Loading

Ruthenium HOR Electrodes

- Increasing the weight %Ru on supported carbon increases performance
- Mass transfer limitations in lower loadings of Ru

We can use similar CL construction approaches again

Dashed lines represent the infiltrated samples where straight lines represent the Vulcan supported samples.

All these tests were performed in hydrogen at 250°C.

Stable Performance in Reformate

Pd (HOR) + Ni (HER) = Pt-Free

Opposite curvatures – activation vs. mass transport limitations

Ru/Ni SA Hydrogen Separation System

Pt/Pt

- Still shows the "better" performance
- System is still ohmically dominated
- Pt is expensive

Ru/Ni

- Performance less than Pt/Pt
- System still ohmically dominated
- Ru and Ni are both drastically cheaper than Pt

Metal loadings: 75% 2.10 mg/cm² (Ni) 60% 1.05 mg/cm² (Pt/Ru)

Direct Electro-oxidation Leads to Possibilities Beyond Reformed NG

- Direct electrooxidation leads to extended fuel possibilities for solid acid systems
- Dry coal gasification is great example of a CO rich fuel source
- Possibilities extend beyond a hydrogen source to a potential source of electricity
 – Direct CO fuel cell

Methanol to Hydrogen Cells

Hydrogen evolution polarization uncorrected for IR (a) and corrected for IR (b) for supported Ru anode (1.05 mg cm⁻²) and supported Ni cathode (2.5 mg cm⁻²) on hydrogen and methanol.

Ru Anode Performance Depends on CO Concentration

- Variable carbon monoxide (balance argon) feed stream to anode
- Hydrogen stream on cathode for reference
- No change in OCV

Cell conditions: 250 °C Anode: Variable CO/Ar 75 °C dew point 1.05 mg/cm² Ru Cathode: H_2 75 °C dew point 1.05 mg/cm² Pt

- Advances in SAFC technology allow major decrease in Pt loading with improved performance.
- A number of non-precious (or less precious) metal catalysts are viable for HOR
- A Pd/Ni cell offers the prospect of Pt-free H2 production from streams containing 10% CO and 0.25% CH₄
- Ru looks promising for HOR
- More work needed to fully implement approaches from SAFCs

Funding Sources

- ARPA-e for SAFC work
- Office of Naval Research (N000141210887)
- NSF TN-SCORE
 (NSF EPS-1004083)

 Tennessee Governor's Chair Fund